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The inverse thermal effect of the liquid displaced in a porous medium is investigated, with the effect occurring
because of the fact that, with the thermal conductivity being neglected, temperature jumps move with the
speed of convective heat transfer. In piston displacement, the front moves with a true velocity which several
times exceeds those of filtration and of convective heat transfer. Due to the faster advance of the displacement
front, a special zone is formed, in which the process of inverse thermal effect of the displaced liquid on the
displacing one is observed.

The results of measurements of a barothermal effect in oil beds are used for determining workable and wa-
tered intervals, intervals of motion outside a column, thermal probing of beds, and for solving other problems of pro-
duction. Special highly sensitive thermometers developed for these purposes are used together with other methods and
lie at the basis of the methods of controlling oil- and gas-field development. Among the most promising problems of
sounding is the forecast of the encroachment of beds with injection water; however, such kind of problems have not
been solved as yet. The difficulties in the development of the theory of the barothermal effect on water–oil displace-
ment consist of the necessity of taking into account complex processes at the front of flooding, where miscible dis-
placement occurs. The most effective method of simplifying such problems is the assumption on a plane front of
displacement (piston displacement), which can be realized with the aid of special additions to water.

It has been established earlier [1] that during the process of oil displacement in the zone of invasion a region
appears in which the temperature field depends on the physical characteristics of the oil. This is the so-called zone of
inverse effect of an oil-saturated region on a water-saturated one. As a result, an abnormal heating of water occurs, in
view of which the study of this phenomenon is of particular interest. Below, for simplicity a linear geometry of flow
is used, since it allows one to reveal the most important characteristic features of the barothermal effect in piston
water–oil displacement.

The temperature field in a porous rod is described by the equation of barothermal effect, which, with the ther-
mal conductivity and adiabatic effect being neglected, has the form

∂Ti

∂t
 + Ui 





∂Ti

∂x
 + εi 

∂Pi

∂x




 = 0 , (1)

where i = 1 and 2 for water (0 < x < R(t)) and oil (R(t) < x < L), respectively.
The model of miscible displacement forecasts the presence of a front with a water-saturation jump from zero to

a certain value of sj. Calculations show that the magnitude of the saturation jump sj depends on the ratio of the viscosities
of water and oil µ = µ2

 ⁄ µ1 and it changes from 0.5 to 0.8 on change in µ from 1 to 20. At a relative viscosity of the
order of ten, changes in water saturation in the displacement zone are insignificant. The mean values of oil saturation
in the displacement zone do not exceed 10%. Under such conditions, the model of piston displacement can be applied
with a high degree of accuracy; it allows one to construct an analytical solution of the temperature problem.
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The rate of convective heat transfer Ui is defined in terms of the pressure field Pi by the formula

Ui = − 
ci

cmi
 
k

µi
 
∂Pi

∂x
 . (2)

The pressure field, in turn, is determined with the aid of the continuity equation and Darcy’s, law. It is shown below
that in the given problem one can avail oneself of a quasi-stationary approximation when the equations for pressure
are assumed to be stationary and the time enters into the problem parametrically in terms of the displacement-front co-
ordinate R(t):

d
2
Pi

dx
2  = 0 . (3)

The distribution of pressure in a homogeneous porous rod having length L and permeability k, at the ends of
which a constant difference of pressures P0 is sustained, under the conditions of piston water–oil displacement with
allowance for the equality of pressures and true velocities at the displacement front x = R(t), is described by the de-
pendences

P1 = − 
P0µ1x

Lµ2 − R∆µ
 + P0 ,   0 < x < R ; (4)

P2 = − 
P0µ2 (x − L)
Lµ2 − R∆µ

 ,   R < x < L , (5)

where ∆µ = µ2 − µ1 is the difference between the viscosities of oil and water. Pressure on the right-hand side end of
the rod is taken as the start of the reading, i.e., it is taken to be equal to zero. An equation for R(t) results from allow-
ance for the fact that the ratio of the rate of water–oil displacement to the filtration rate is equal to the porosity m:

dR

dt
 = 

1

m
 
k

µi
 
∂Pi

∂x



x=R

 = 
1

m
 

kP0

Lµ2 − R∆µ
 . (6)

Equation (6) yields an expression which describes the position of the displacement boundary and satisfies the condition
R(0) = 0:

R = 
Lµ2

∆µ
 − √L

2µ2
2

∆µ2  − 2 
k

m∆µ
 P0t  . (7)

When the displacement front attains the point R = L, the pressure distribution no longer depends on time:

P = 
P0 (L − x)

L
 ,   0 < x < L . (8)

The process of water–oil displacement from a porous rod of length L proceeds during the period of time

τ = mL
2
 
µ1 + µ2

2kP0
 . (9)

The resulting equation for the displacement time allows one to determine more accurately the conditions of applicabil-
ity of the quasi-stationary approximation used in the present work. It gives rather accurate results if the time needed
for establishment of a pressure field due to piezoconductivity L2 ⁄ χ is much shorter than the displacement time τ,
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which is equivalent to the condition of small compressibility of a porous medium by a saturated liquid βP0 << 1,
which is satisfied with a high accuracy for a water- and oil-saturated porous medium (here χ = k ⁄ mβ).

For an oil-saturated zone, the solution of the temperature problem

∂T2

∂t
 + U2 





∂T2

∂x
 + ε2 

∂P2

∂x




 = 0 ,   T2 (t = 0) = 0 (10)

with allowance for the equalities

∂P2

∂x
 = − 

P0µ2

Lµ2 − R∆µ
 ,   U2 = − 

c2

cm2
 

k

µ2
 
∂P2

∂x
 = 

c2

cm2
 

k

µ2
 

P0µ2

Lµ2 − R∆µ
(11)

can be found by the method of characteristics that are described as

x = − 
c2

cm2
 

m

∆µ
 √L

2µ2
2
 − 2 

k∆µ
m

 P0t  + C , (12)

in the form

T2 = − ε2 
c2

cm2

 
µ2

2∆µ
 mP0 ln 




1 − 2 

k∆µ

mL
2µ2

2
 P0t




 ,

x ≥ R = 
Lµ2

∆µ
 − √L

2µ2
2

∆µ2  − 2 
k

m∆µ
 P0t  . (13)

For the water-saturated zone, the solution of the temperature problem

∂T1

∂t
 + U1 





∂T1

∂x
 + ε1 

∂P1

∂x




 = 0 ,   T1 (x = 0) = 0 (14)

subject to

∂P1

∂x
 = − 

P0µ1

Lµ2 − R∆µ
 ,   U1 = 

c1

cï1
 

kP0

Lµ2 − R∆µ
(15)

can also be found by the method of characteristics that are described as

x = − 
c1

cm1
 

m

∆µ
 √L

2µ2
2
 − 2 

k∆µ
m

 P0t  + C , (16)

in the form

T1 = ε1 
c1

cm1
 
µ1

∆µ
 mP0 ln 
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∆µ
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x

√L
2µ2

2
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t
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x < R1 (t) = 
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m
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Lµ2 − √L

2µ2
2
 − 2k∆µP0 

t

m




 . (17)
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Note that the dimensions of the region where Eq. (17) is applicable do not exceed those of the displacement
zone R1(t) < R(t); therefore for the region R1(t) < x < R(t) it is necessary to construct the solution of the problem

∂T1

∂t
 + U1 





∂T1

∂x
 + ε1 

∂P1

∂x




 = 0 ,   T1 (x = R (t)) = T2 (t) . (18)

This solution has the form

T1 = − ε1 
c1

cm1
 
µ1

2∆µ
 mP0 ln 




µ2

2
L

2
 − 2 

k∆µ
m

 P0t



 + C1 . (19)

The characteristics of Eq. (18) which coincide with (16) make it possible to construct the solution of problem (18).
For this purpose, having equated R(t) from (7) to characteristic (16), we will express t in terms of the constant C
which enters into Eq. (16):

t = 
m

2kP0∆µ
 










L
2µ2

2
 − 











Lµ2 − C∆µ

1 − 
c1m

cm1











2










 . (20)

Having substituted (20) into (19) and used the boundary condition of problem (18), we obtain an expression for the
constant C1, with the aid of which we will represent the unknown solution in the form

T1 = ε1 
c1

cm1
 
µ1

∆µ
 mP0 ln 











Lµ2 − C∆µ




1 − 
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 √L

2µ2
2
 − 2k∆µ 

P0t

m











 + T2 










m
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L
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2
 − 











Lµ2 − C∆µ

1 − 
c1m

cm1











2




















 . (21)

By excluding the constant C from (20) and (21) and substituting T2 from (21) into (13), we obtain a finite expression
for the temperature field in the region R1(t) < x < R(t):

T1 = ε1 
c1

cm1
 
µ1

∆µ
 mP0 ln 











cm1

cm1 − c1m
 










Lµ2 − x∆µ

√µ2
2
L

2
 − 2k∆µP0 

t
m

 − 
c1

cm1
 m




















 −

− ε2 
c2

cm2
 
µ2

∆µ
 mP0 ln 








cm1

cm1 − c1m
 







1 − 

x∆µ
Lµ2

 − 
c1

cm1
 m √1 − 

2k∆µ

mL
2µ2

2
 P0t














 . (22)

The solution of the problem includes Eqs. (17) and (22) for the water-saturated zone and Eq. (13) for the oil-
saturated one. According to Eq. (22), in the water-saturated zone a region R1(t) < x < R(t) appears, in which the tem-
perature field is determined by the physical characteristics of oil and water. Consequently, there occurs a reverse
thermal effect of the oil-saturated zone on the water-saturated one due to heat transfer through the porous-medium
skeleton. The second term in Eq. (22) describes the contribution of this process. In the region indicated above, an ab-
normally high heating of water is observed. The phenomenon described is, in a sense, a thermal analog of the
Vavilov–Cherenkov radiation which occurs during motion of charged particles with a velocity exceeding the velocity
of electromagnetic waves in the medium.

The phenomenon of the reverse thermal effect originates for the following reasons. The rate of motion of tem-
perature jumps coincides with that of convective heat transfer (2), which differs from the rate of filtration determined
by Darcy’s, law, the presence of the factor of which is equal to the ratio of the volumetric heat capacity of the liquid
to the volumetric heat capacity of the porous medium [2]. Therefore the rate of convective transfer differs from the

776



rate of filtration: the former is smaller than the latter in the oil-saturated porous medium and vice versa in the water-
saturated one. In the case of piston displacement, the front moves with a true velocity which is several times higher
than both the rate of filtration and the rate of convective heat transfer. It is due to the faster advance of the displace-
ment front that the process of the reverse thermal effect of a displaced fluid on the displacing one originates. The in-
terest in investigation of this zone is also explained by the fact that the dimensions of the zone are relatively large.

By the time the water ceases to displace the oil, t = τ, the temperature field in the porous rod is described
by the expression

T1 = 















ε1 
c1

cm1
 
µ1

∆µ
 mP0 ln 




1 + 

cm1

c1m
 
∆µ
µ1

 
x

L




 ,   0 < x < 

c1

cm1
 mL ;

ε1 
c1

cm1
 
µ1

∆µ
 mP0 ln 
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cm1 − c1m
 




µ2

µ1
 − 

x∆µ
Lµ1

 − 
c1

cm1
 m







 − ε2 

c2

cm2
 
µ2

∆µ
 mP0 ×

× ln 




cm1

cm1 − c1m
 



1 − 

x∆µ
Lµ2

 − m 
c1

cm1
 
µ1

µ2








 ,   

c1

cm1
 mL < x < L .

(23)

According to (23), the zone of the reverse thermal effect by the time the displacement ceased at the values of
the physical parameters indicated below (see Figs. 1–4) lies within the limits 2.4 m < x < 10 m, i.e., it occupies a con-
siderable portion of the porous-rod length (76%). As applied to oil beds, this means that on the breakthrough of water
into the well, the registered effect of water heating will be the same as for oil. This imposes significant limitations on
the employed thermometric technique of revealing the water-filled portions of the bed in oil wells. The effect of water
heating will decrease only on termination of the stage of the "carrying-out of residual heating" from the zone of re-
verse thermal influence of the oil displaced. From this follows the practical importance of taking into account the phe-
nomenon of reverse thermal effect of this oil when interpreting thermograms recorded in wells.

In order to find the temperature field for t > τ, we will resort to the solution of the following simple problem:

∂T

∂t
 + U 





∂T

∂x
 + ε1 

∂P1

∂x




 = 0 ,   U = 

c1

cm1
 

k

µ1
 
P0

L
 ,   T (x = 0) = 0 ,   T (t = τ) = T1 (x, τ) . (24)

This solution has the form

Fig. 1. Dependence of the magnitude of the barothermal effect on time at dif-
ferent points of the porous rod with different coordinates: 1) x = 1; 2) 3; 3) 5;
4) 8; 5) 10 m.

Fig. 2. Temperature distribution along the length of the porous rod at different
times: 1) t = 0.5τ; 2) 0.7τ; 3) τ; 4) 1.1τ; 5) 1.2τ; 6) 1.3τ; 7) 1.5τ; 8) 1.7τ.
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T = 













ε1 
P0

L
 x ,   x ≤ 

c1

cm1
 

k

µ1
 
P0

L
 (t − τ) ;

ε1 
c1

cm1

 
k

µ1

 
P0

2

L
2
 (t − τ) + T1 




x − 

c1

cm1
 

k

µ1
 
P0

L
 (t − τ) ,  τ




 ,   

c1

cm1
 

k

µ1
 
P0
L

 (t − τ) ≤ x ≤ L .
(25)

Having substituted the corresponding expression for T1 from (23) into (25), we obtain

T = 
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L
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L
 (t − τ)








 + ε1 
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k
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L
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k
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k
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cm1
 
µ1

∆µ
 mP0 ln 





cm1

cm1 − c1m
 




µ2

µ1
 − 
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 (t − τ) < x < L .

(26)

On termination of the stage indicated, a steady-state temperature distribution is set:

T = ε1 
P0

L
 x ,   0 < x < L ,   t > τ + 

cm1
c1

 
µ2

k
 
L

2

P0
 . (27)

Expressions (17) and (22) for the water-saturated zone and (13) for the oil-saturated one, as well as Eqs. (26) and
(27), entirely solve the problem set. Below we consider the results of the calculations performed on the basis of the
expressions obtained.

Figure 1 presents the dependences of the magnitude of the barothermal effect ∆T on time in water–oil dis-
placement in a porous thermally insulated rod of length L = 10 m at different points of this rod. In the calculations,
the following values of the physical parameters were adopted: the Joule–Thompson coefficients for water ε1 = 0.02

Fig. 3. Contribution of the effect of reverse influence along the length of the
porous rod at the time the displacement is terminated, t = τ: 1) overall tem-
perature; 2) contribution of the barothermal effect on water; 3) absolute contri-
bution of the effect of reverse influence; 4) relative contribution of the effect
of reverse influence.
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K/atm, for oil ε2 = 0.04 K/atm; water viscosity µ1 = 10–3 Pa⋅sec, oil viscosity µ2 = 10–2 Pa⋅sec, difference of pres-
sures at the rod ends P0 = 100 atm; volumetric heat capacities of water c1 = 1000 kcal/(K⋅m3), of oil c2 = 400
kcal/(K⋅m3), of the water-saturated porous medium cm1 = 820 kcal/(K⋅m3), of the oil-saturated one cm2 = 700
kcal/(K⋅m3); the porous medium permeability k = 10−11 m2, and the porosity m = 0.2.

All the curves have similar characteristic features of their behavior, which are as follows. For short times an
increase in the temperature which attains a maximum on approach of the water front is observed. This maximum in-
creases with the coordinate x. On attainment of the highest value, a decrease in the temperature begins, which is ex-
plained by the characteristic features of the distribution of temperature in the region of the reverse influence of the
oil-saturated zone on the water-saturated one. Thereafter, the temperature on all the curves attains a minimum, and
then it begins to grow. The increase in the temperature continues till a steady-state value is established at each point.

Figure 2 presents the dependences of the value of the barothermal effect on the coordinate x for different
times. For t < τ, at high values of x the plots contain portions over which the temperature is independent of x (curves
1 and 2). These portions correspond to the oil-saturated zone of the porous medium. Curve 3 shows the temperature
distribution at the moment when water reaches the right-hand side of the porous rod. Precisely for this curve is the
contribution of the reverse thermal effect observed within the range 2.4 m < x < 10 m. For the times t > τ, curves 4–8
reflect the process of the "carrying-out of residual heating" and development of a steady-state distribution of tempera-
ture. The indicated curves contain portions of a steady-state temperature at low values of x and portions with an un-
steady-state temperature at high values of x. From the analysis of the curves, it follows that the process of  establish-
ment of the temperature at the above-indicated values of the parameters occupies a time interval of 0.7τ.

Figure 3 depicts the contribution of the effect of the reverse influence on temperature distribution at the mo-
ment of  termination of the displacement. Curve 1 represents the dependence of temperature on the coordinate x; this
dependence is determined by the contributions of the barothermal effect in water (curve 2) and of the effect of reverse
influence of the displaced fluid (curve 3). From a comparison of the curves, it follows that the main contribution to
the temperature field is made by the effect of reverse influence. This conclusion is illustrated more vividly by curve
4, which represents the relative contribution of the effect of reverse influence, i.e., the ratio of the absolute magnitude
of the effect of reverse influence to the overall temperature. The results of comparison of the calculated and experi-
mental curves obtained on a porous-medium model of length 1 m on 10-atm depression are indicative of their satis-
factory agreement (Fig. 4).

Thus, in the zone of reverse effect, the temperature field of a filtered water is mainly determined by the in-
fluence of the oil displaced. The temperature effect of the heating of water increases appreciably in this case.

CONCLUSIONS

1. On displacement of oil of elevated viscosity by water, a transition zone is formed due to the mutual influ-
ence of oil and water; in this zone, the barothermal effect of water is increased repeatedly. The zone of the mutual
influence of water and oil (the zone of reverse thermal influence of the fluid displaced) has great dimensions, and by
the time of termination of displacement process it occupies more than 70% of the displacement-zone length. In the

Fig. 4. Comparison between the calculated and experimental values of the
barothermal effect: 1) calculated curve of relative temperature; 2) experimental
points.
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zone of the reverse influence, the temperature field of the filtered water is mainly determined by the influence of the
oil displaced.

2. The process of establishment of the temperature field consists of two stages: a) the process of a change in
the temperature occurs in a variable pressure field attributable to the motion of the displacement boundary; b) the es-
tablishment of temperature occurs due to thermodynamic effects in water and to the carrying-out of the residual po-
rous-medium heating formed by the end of the first stage.

3. The dependence of temperature on time at each point of the displacement zone is nonmonotonic. The tem-
perature attains a maximum at the time of approaching the water front; then it passes through a minimum and again
increases to a steady-state value. The attainment of the temperature maximum is explained by the increase in the ef-
fective pressure drop overcome by oil and occurring because of the multiple difference between the viscosities of
water and oil.

This work was carried out with support from the Russian Fundamental Research Foundation, grant 02-01-
97908 2002AG.

NOTATION

C and C1, integration constants; c1 and c2, volumetric heat capacities of water and oil, respectively, J/(K⋅m3);
cm1 and cm2, volumetric heat capacities of water- and oil-saturated porous media, J/(K⋅m3); k, permeability of a porous
medium, m2; L, length of a porous rod, m; m, porosity; P and P0, pressure and difference of pressures at the ends of
the rod, Pa; R(t) and R1(t), functions that describe the position of the displacement-front boundary and of the left
boundary of the intermediate zone, m; sj, the value of the water-saturability jump at the boundary of the displacement
zone; T, magnitude of the barothermal effect, K; t, current time, sec; U, velocity of convective heat transfer, m/sec; x,
coordinate, m; β, compressibility factor, Pa−1; ε1 and ε2, Joule–Thompson coefficients for water and oil, K/Pa; µ, rela-
tive viscosity of oil; µ1 and µ2, viscosities of water and oil, Pa⋅sec; τ, time of water–oil displacement from the porous
rod, sec; χ, coefficients of piezoconductivity, m2/sec. Subscripts: m, porous medium; j, jump; i, number of the region.
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